Ramanujan's Eisenstein series and new hypergeometric-like series for 1/pi2

نویسندگان

  • Nayandeep Deka Baruah
  • Bruce C. Berndt
چکیده

Using hypergeometric identities and certain representations for Eisenstein series, we uniformly derive several new series representations for 1/ 2. © 2008 Elsevier Inc. All rights reserved. MSC: 33C05; 33E05; 11F11; 11R29

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Hypergeometric-like Series for 1/π Arising from Ramanujan’s Theory of Elliptic Functions to Alternative Base 3 Nayandeep Deka Baruah and Narayan Nayak

By using certain representations for Eisenstein series, we find new hypergeometric-like series for 1/π2 arising from Ramanujan’s theory of elliptic functions to alternative base 3.

متن کامل

Noncommutative Extensions of Ramanujan’s 1ψ1 Summation ∗

Using functional equations, we derive noncommutative extensions of Ramanujan's 1 ψ 1 summation. 1. Introduction. Hypergeometric series with noncommutative parameters and argument, in the special case involving square matrices, have been the subject of recent study, see e.g. the papers by Duval and Ovsienko [DO], Grünbaum [G], Tirao [T], and some of the references mentioned therein. Of course, t...

متن کامل

A NEW An EXTENSION OF RAMANUJAN'S 1 1 SUMMATION WITH APPLICATIONS TO MULTILATERAL An SERIES

Abstract. In this article, we derive some identities for multilateral basic hypergeometric series associated to the root system An. First, we apply Ismail’s [15] argument to an An q-binomial theorem of Milne [25, Th. 5.42] and derive a new An generalization of Ramanujan’s 1ψ1 summation theorem. From this new An 1ψ1 summation and from an An 1ψ1 summation of Gustafson [9] we deduce two lemmas for...

متن کامل

Curious Extensions of Ramanujan ’ s

We deduce new q-series identities by applying inverse relations to certain identities for basic hypergeometric series. The identities obtained themselves do not belong to the hierarchy of basic hypergeomet-ric series. We extend two of our identities, by analytic continuation, to bilateral summation formulae which contain Ramanujan's 1 ψ 1 summation and a very-well-poised 4 ψ 6 summation as spec...

متن کامل

Combinatorial proofs of Ramanujan's 11 summation and the q-Gauss summation

Theorems in the theory of partitions are closely related to basic hypergeometric series. Some identities arising in basic hypergeometric series can be interpreted in the theory of partitions using Fpartitions. In this paper, Ramanujan’s 1ψ1 summation and the q-Gauss summation are established combinatorially.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 160  شماره 

صفحات  -

تاریخ انتشار 2009